(1629 - 1695) yüzyılımızın seçkin bir düşünürü (a.n. whitehead), 17. yüzyılı "dâhiler yüzyılı" diye nitelemişti. kepler, galileo, newton gibi hepimizin bildiği bu dâhilerden biri de christiaan huygensti huygens biri pratik, diğeri teorik olmak üzere başlıca iki çalışmasıyla bilimin öncüleri arasında yer almayı başarmıştır.
hollandada dünyaya gelen christiaan, daha küçük yaşında, matematik ve bilime belirgin bir ilgi duymaktaydı. aydın kesimde etkili kişiliğiyle tanınan babası, devlet adamlığının yanı sıra müzik ve şiirle de uğraşmaktaydı. entellektüel bir ortamda yetişen christiaan, üniversite öğrenimini tamamladıktan kısa bir süre sonra astronomi ve matematik konularında yayımladığı tezlerle bilim çevrelerinin, bu arada dönemin ünlü matematikçi-fîlozofu rene descartesın özel dikkatini çeker.
huygens bilimsel çalışmalarına astronomide başlar. teleskop daha yeni kullanılmaya başlanmıştı. genç bilim adamı, geçimini gözlük camı yapmakla sağlayan filozof spinoza ile işbirliğine girerek daha güçlü bir teleskop elde eder.
gözlemleri arasında satürn gezegeninin çevresindeki "hale" de vardı. onun geniş, düz bir halkaya benzettiği bu hale aslında iri toz parçalarının oluşturduğu üç kuşak içermektedir. optik araçlar üzerindeki çalışmasının izlerini günümüzde kullanılan araçların taşıdığı söylenebilir. ama onu gününde, asıl üne kavuşturan şey, sarkaçlı saati icat etmesiydi. gerçi galileo daha önce zamanı belirlemede sarkaçtan yararlanılabileceğini ileri sürmüştü. ancak yoğun çabalara karşın istenilen sonuca ulaşılamamıştı.
huygensin 1657de yaptığı saat oldukça dakikti. bu icat öncelikle denizcilikteki gereksinim göz önüne alınarak ortaya konmuştu. ne var ki, beklenen sonuç tam gerçekleşmez. yerçekiminin sarkaç üzerindeki etkisi gözden kaçmıştı. bilindiği gibi belli bir yerde sarkacın her salınım süresi aynıdır. ancak saat arzın merkezinden uzaklaştıkça (örneğin, yüksek bir dağ tepesine çıkarıldığında, ya da, ekvatora yaklaştırıldığında) salınım giderek yavaşlar, saat geri kalır.
bunu daha sonra fark eden huygens, yitirilen zaman miktarından arzın ekvatordaki şişkinliğinin hesaplanabileceğini bile gösterir.
bu arada huygensin adı sınır ötesi bilim çevrelerinde de duyulmaya başlamıştır. 1663te royal society (ingiliz kraliyet bilim akademisi) onu, üyelik vererek onurlandırır. huygens törene katılmak için londraya gittiğinde newtonla tanışır.
newton çalışmalarını takdir ettiği bu yabancı bilim adamını ülkesinde tutmak için girişimlerde bulunur. ama huygense daha parlak bir öneri xiv. louisden gelir. fransanın bilimde üstün bir konuma gelmesini sağlamaya çalışan kral, huygensi bilimsel çalışmalara katılmak üzere parise çağırır. huygens, üstlendiği görevde, fransa ile hollanda arasında bu sırada çıkan savaşa karşın, aralıksız onbeş yıl kalır.
üzerinde yoğun uğraş verdiği başlıca konu ışığın yapı ve devinim biçimiydi.
işığın ne olduğu gizemli bir sorun olarak tarih boyunca ilgi çekmiştir. antik yunan bilginleri nesnelerin görünebilirliğini gözün yarattığı bir olay sayıyordu. örneğin, epicurus görüntünün gözden kaynaklanan resimlerden oluştuğunu ileri sürmüş, platon ise gözün ve bakılan nesnenin saçtığı ışınların birleşimi olduğunu vurgulamıştı. daha garip bir açıklamaya göre de, baktığımız nesneyi gözden fırlayan birtakım görünmez incelikte dokunaçlarla görmekteydik.
17. yüzyıla gelinceye dek ışık konusunda önemli bir gelişmeye tanık olmamaktayız; üstelik ışık deviniminin anlık bir olay olduğu görüşü yaygındı. aslında doğal olan da buydu; çünkü, ışığın belli bir hızla devindiği sağduyuya pek yatkın bir düşünce değildi. gözümüzü açar açmaz görmüyor muyduk?
işığın belli bir hızla ilerlediği düşüncesini ilk kez danimarkalı astronom römer ortaya koyar. 1675te jüpiter gezegeninin birinci uydusunu gözlemlemekte olan römer, uydunun çevresinde döndüğü gezegenin arkasında geçirdiği süreyi saptamak istiyordu. değişik zamanlarda yaptığı ölçmelerin farklı sonuçlar vermesi şaşırtıcıydı. römer bu tutarsızlığı açıklamalıydı.
römer, dünya ile jüpiterin güneş çevresindeki dolanımlarında kimi kez birbirlerine yaklaştıklarını, kimi kez uzaklaştıklarını biliyordu. şaşırtıcı bulduğu olayın, iki gezegenin arasındaki mesafe ile bağıntılı olduğunu görür. aradaki mesafe kısaldıkça uydunun gezegen arkasında geçirdiği sürenin azaldığını, mesafe uzadıkça sürenin arttığını saptayan römer, bunu, ışığın belli bir hızla ilerlediği hipoteziyle açıklar. işığın aldığı mesafe kısaldığında uydunun erken doğuşu kaçınılmazdı. işığın belli bir hızla devindiği düşüncesi ister istemez başka bir soruya yol açmıştı: işık nasıl devinmektedir? huygens bu soruyu dalga kuramıyla, newton parçacık kuramıyla yanıtlar.
huygens ışığın dalga kuramını fransızca kaleme aldığı traite de la lumiere (işık üzerine inceleme) adlı yapıtında ortaya koyar. onun bu kurama yönelmesinde bir etken ışıkla ses arasında gördüğü benzerlikti. bir başka etken de bir delikten çıkan ışığın yalnız tam karşısında ulaştığı noktadan değil çevredeki hemen her noktadan görülmesi olayıydı. bu olay ışığın devinimini anlamak bakımından önemliydi.
huygensin "esir" kavramı bu işlevi sağlayacaktı. bir benzetme olarak, demiryolunda biribirine dokunan ama bağlı olmayan bir dizi vagon düşünelim. şimdi dizinin başındaki vagona lokomotifin hafif bir vuruş yapması nasıl bir sonuç doğurur? darbeyi dizi boyu ileten vagonların yerlerinde kaldığı, yalnızca son vagonun uzaklaştığı görülür.
nedenini, devinimin "etki - tepki" yasasında dile gelen ilişkide bulabiliriz: vuruş etkisini bir sonraki vagona ileten her vagon aldığı tepkiyle dizideki yerinde kalır. bir tepki almayan son vagon ise, aldığı vuruş etkisiyle diziden uzaklaşır. verdiğimiz bu örnek dalga kuramına önemli bir açıdan ışık tutmaktadır. huygens, uzayın, "esir" dediği görünmez bir nesneyle dolu olduğunu varsaymaktaydı. buna göre, ışık bir yerden başka bir yere ilerlerken tıpkı vagonların ilettiği vuruş etkisiyle devinir, şu farkla ki, ilerleme tek bir yönde değil, esir ortamında tüm yönlerde oluşur. nasıl ki, demiryolunda ilerleyen şey vagonlar değilse, uzayda da ilerleyen tanecik türünden nesneler değil, devinim dalgasıdır.
huygens dalga kuramıyla ışığın yansıma, kırılma, kutuplaşma gibi davranışlarını da açıkladığı inancındaydı. ne var ki, dalga kuramı, newtonun parçacık kuramının gölgesinde, 19. yüzyıla gelinceye dek gözden uzak kalır.
newton 1672de royal societyye sunduğu bildirisinde beyaz bir ışık ışınının cam prizmadan geçtiğinde gökkuşağındaki gibi bir renk spektrumu sergilediğini belirterek, bunun ışığın taneciklerden oluştuğu hipoteziyle açıklanabileceğini vurgulamıştı. rakibi robert hookeun eleştirisi karşısında daha esnek bir tutum içine giren newton her ne kadar parçacık ve dalga kuramlarının ikisine de yer veren "karma" bir kuramdan söz ederse de sonuç değişmez; bilim çevreleri newtonun büyüleyici etkisinde parçacık kuramına üstünlük tanır.
19. yüzyılın başlarında durumda beklenmedik bir gelişme olur; dalga kuramı yeniden ön plana çıkar. işık üzerinde yeni deneylere girişen thomas young (1773-1829) elde ettiği verilerin ışığın dalga kuramıyla ancak açıklanabileceğini görür. kaynağı ve sıcaklığı ne olursa olsun ışık hızının değişmemesi, seçilecek kuramın geçerlik ölçütü olmalıydı.
younga göre, dalgaların hızının aynı kalmasını bekleyebilirdik; ama tanecikler için aynı şey söylenemezdi. gene, yansıma ve kırılmanın aynı zamanda olması, dalga açısından bakılınca doğaldı; oysa, taneciklerin bir bölümü yansırken, bir bölümünün kırılması açıklamasız kalan bir olaydı.
öte yandan, newton, ışığın dalga niteliğinde olması halinde doğrusal bir çizgide ilerlemesine, keskin gölge oluşturmasına olanak bulmamıştı. youngın buna yanıtı basitti: dalga uzunlukları yeterince kısa ise, ışığın hem doğrusal devinimi, hem de keskin gölge oluşumu beklenebilirdi. ayrıca, youngın "karışım" (interference), onu izleyen fresnelin "kırınım" (diffraction) denen olgulara getirdikleri açıklamalar dalga kuramını destekleyici nitelikteydi.
daha sonra maxwellin dalga kuramını daha kullanışlı bulması da dengenin büsbütün parçacık kuramı aleyhine dönmesine yol açar. ne var ki, yüzyılımızın başında durum bir kez daha değişir. planckın kuvantum, einsteinın foto-elektrik kavramlarıyla ışığın parçacık kuramı yeniden ön plana çıkar.
bugün ulaşılan düzeyde kuramlardan ne birinin ne ötekinin kesin egemenliğinden söz edilebilir. bir bakıma newtonun sözünü ettiği, şimdi kimi bilim adamlarının "wavicle" diye dile getirdikleri "dalga-tanecik" karması ya da ikilemiyle karşı karşıyayız. geçici de olsa bu "barışıklık" aşamasında egemenlik paylaşılmış görünüyor. huygens dalga kuramının öncüsü olarak bilim gündeminde yerini korumaktadır.
http://www.bilimadamlari.net/bilim-adamlari/26-christian-huygens.html
christiaan huygens
hollandalı gökbilimci, matematikçi ve fizikçi.
matematiğe çok küçük yaşta ilgi duymaya başlamıştır. 1656da yazdığı de ratiociniis in ludo aleae adını taşıyan ve olasılık hesabını detaylı bir şekilde kapsayan ilk yapıtını yazdı. açanlar ve açılanlar kuramını ortaya attı; burada eğrilik merkezlerini belirleyerek çevrim eğrisinin özelliklerini açıkladı, sarmaşık eğrisinde düzeltme yaptı ve zincir eğrisi problemini çözdü.
matematiğe çok küçük yaşta ilgi duymaya başlamıştır. 1656da yazdığı de ratiociniis in ludo aleae adını taşıyan ve olasılık hesabını detaylı bir şekilde kapsayan ilk yapıtını yazdı. açanlar ve açılanlar kuramını ortaya attı; burada eğrilik merkezlerini belirleyerek çevrim eğrisinin özelliklerini açıkladı, sarmaşık eğrisinde düzeltme yaptı ve zincir eğrisi problemini çözdü.
neden bekliyorsun?
bu sözlük, duygu ve düşüncelerini özgürce paylaştığın bir platform, hislerini tercüme eden özgür bilgi kaynağıdır.
katkıda bulunmak istemez misin?